Glutaraldehyde cross-linking of immobilized thermophilic esterase on hydrophobic macroporous resin for application in poly(ε-caprolactone) synthesis.

نویسندگان

  • Min Wang
  • Hui Shi
  • Di Wu
  • Haobo Han
  • Jianxu Zhang
  • Zhen Xing
  • Shuang Wang
  • Quanshun Li
چکیده

The immobilized thermophilic esterase from Archaeoglobus fulgidus was successfully constructed through the glutaraldehyde-mediated covalent coupling after its physical adsorption on a hydrophobic macroporous resin, Sepabeads EC-OD. Through 0.05% glutaraldehyde treatment, the prevention of enzyme leaching and the maintenance of catalytic activity could be simultaneously realized. Using the enzymatic ring-opening polymerization of ε-caprolactone as a model, effects of organic solvents and reaction temperature on the monomer conversion and product molecular weight were systematically investigated. After the optimization of reaction conditions, products were obtained with 100% monomer conversion and Mn values lower than 1010 g/mol. Furthermore, the cross‑linked immobilized thermophilic esterase exhibited an excellent operational stability, with monomer conversion values exceeding 90% over the course of 12 batch reactions, still more than 80% after 16 batch reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis.

Developing an efficient immobilized enzyme is of great significance for improving the operational stability of enzymes in poly(ε-caprolactone) synthesis. In this paper, a thermophilic esterase AFEST from the archaeon Archaeoglobus fulgidus was successfully immobilized on the epoxy support Sepabeads EC-EP via covalent attachment, and the immobilized enzyme was then employed as a biocatalyst for ...

متن کامل

Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

Background: Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective: The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorpti...

متن کامل

Cell debris self-immobilized thermophilic lipase: a biocatalyst for synthesizing aliphatic polyesters.

The paper explored the catalytic activity of a cell debris self-immobilized thermophilic lipase for polyester synthesis, using the ring-opening polymerization of ε-caprolactone as model. Effects of biocatalyst concentration, temperature, and reaction medium on monomer conversion and product molecular weight were systematically evaluated. The biocatalyst displayed high catalytic activity at high...

متن کامل

Immobilization of Subtilisin Carlsberg on Modified Silica Gel by Cross-linking and Covalent Binding Methods

Proteases are important enzymes that their role in various industries is undeniable. However, keeping enzymes stable during its activity in harsh conditions is so important. In this study, protease enzyme was immobilized on the porous silica particles and its stability in different temperatures and pHs was evaluated. First silica particles were aminated by 3-aminopropyltriethoxysilane then the ...

متن کامل

Study on Papain Immobilization on a Macroporous Polymer Carrier

Macroporous resin microbeads of methyl methacrylate-divinyl benzene copolymer were synthesized by radical suspension polymerization of acrolein with divinylbenzene in the presence of a pore-creating agent, petroleum ether. The microbeads had a large specific surface area and large pores covered the entire surface of the resin. This macroporous polymer carrier was aminated by hydrazine hydrate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2014